
J .  Fluid Mech. (1982), wol. 116, pp.  91-114 
Printed i n  Great Britain 

91 

The instability of oscillatory plane Poiseuille flow 

By CHRISTIAN H. VON KERCZEK 
Mechanical Engineering Department, 

The Catholic University of America, Washington, D.C. 

(Received 13 October 1980 and in revised form 28 April 1981) 

The instability of oscillatory plane Poiseuille flow, in which the pressure gradient is 
time-periodically modulated, is investigated by a perturbation technique. The Floquet 
exponents (i.e. the complex growth rates of the disturbances to the oscillatory flow) 
are computed by series expansions, in powers of the oscillatory to steady flow velocity 
amplitude ratio, about the values of the growth rates of the disturbances of the steady 
flow. It is shown that the oscillatory flow is more stable than the steady flow for values 
of Reynolds number and disturbance wave number in the vicinity of the steady flow 
critical point and for values of frequencies of imposed oscillation greater than about 
one tenth of the frequency of the steady flow neutral disturbance. At very high and 
low values of imposed oscillation frequency, the unsteady flow is slightly less stable 
than the steady flow. These results hold for the values of the velocity amplitude ratio 
a t  least up to 0.25. 

1. Introduction 
The study of the instability characteristics of oscillatory plane Poiseuille (OPP) 

flow is of interest as a prototype problem in the class of time-periodic shear flows. 
This class of flow problems may have industrial applications as well as applications 
to the field of physiological fluid mechanics. A recent review of the stability theory 
of time-periodic flows was given by Davis (1976). 

Oscillatory plane Poiseuille flow consists of the superposition of the steady parabolic 
axial flow velocity profile and an axial oscillatory velocity profile. The oscillatory 
velocity profile consists of Stokes layers a t  the channel walls matched to an oscillating 
slug flow in the core of the channel. The linear stability theory of this OPP flow has 
been examined by Grosch & Salwen (1968), Herbert (1972) and Hall (1975). These 
three studies contain certain conclusions concerning the stability characteristics of 
this flow that are not entirely in obvious accord. 

The pioneering work of Grosch & Salwen (1968) used the Galerkin method and 
numerical time integration to compute the stability characteristics of OPP flow a t  
some selected values of oscillation frequency and amplitude, disturbance wave- 
number a and mean Reynolds number R. Near the critical point, tl = tlC = 1.0206 
and R = R, = 5772.22 of the underlying steady flow, Grosch & Salwen found that 
OPP flow seems to be more stable in the sense that the growth (decay) rate of the 
principal disturbance mode was smaller (larger) in the unsteady flow. This result 
holds, according to Grosch & Salwen, only for the values of the ratio of oscillation 
velocity amplitude to mean velocity amplitude that are less than about 0.105. For 
larger values of this ratio and a t  oscillation frequency that is equal to the principal 
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disturbance frequency, Grosch & Salwen find a rather drastic destabilization of the 
flow. 

Herbert (1972) examined the disturbance energy transfer in the thin Stokes layers 
a t  the channel walls of OPP flow. He concluded that for small values of the oscillatory 
basic-state velocities the disturbance experiences a net decay in the wall region over 
one cycle of the oscillation if the oscillation frequency is greater than one-fourth the 
disturbance frequency. Herbert interpreted this to mean that the entire flow field is 
thus stabilized by the oscillations. 

However, Hall (1975) finds that a t  very high frequency the oscillations may de- 
stabilize the mean flow a t  any value of the oscillation amplitude. The frequency of thc 
imposed oscillations, for the validity of Hall’s results, must be much larger than the 
disturbance frequency. Thus, the region of validity of Hall’s results and the results of 
Grosch & Salwen (1968) and Herbert (1972) do not, necessarily overlap. The degree of 
destabilization found by Hall is slight. He finds that the critical Reynolds number is 
reduced by the amount 6R 21 -A2(21.7/P)5 R, for /3 -+ 00. Here p is a measure of the 
oscillation frequency and A is the ratio of oscillation velocity to mean velocity ampli- 
tude. This result is claimed to  be valid for p > 50. The value p N 40 corresponds to 
an imposed oscillation of about twice the frequency of the neutrally stable disturbance 
mode a t  the critical point of steady plane Poiseuille flow. 

A re-examination of the stability characteristics of OPP flow is made in this study 
in order to attempt to fill some of the remaining information gaps concerning this 
stability problem. A particularly interesting and important point that  needs to be 
examined is Grosch & Salwen’s (1968) claim that OPP flow is destabilized when the 
oscillatory velocity amplitude exceeds the value of 0-105U,,, where U, is the maximum 
mean velocity. Grosch & Salwen (1968) conjectured that this destabilization was the 
result of a resonant coupling between the imposed oscillation (with a frequency equal 
to  the frequency of the principal neutral disturbance) and one of the higher, stable, 
modes of the mean flow. In this study the stability problem is analysed by a pertur- 
bation method which allows the direct evaluation of the effects of the imposed oscilla- 
tion on each disturbance mode of the underlying steady flow. Thus Grosch & Salwen’s 
result will be examined in order to identify specifically any kind of resonant coupling 
between the imposed oscillation and particular disturbance modes, or combin a t‘ ions 
of modes, of the mean flow. 

It is also of interest to determine the oscillation frequency which seeins to be the most 
effective in either stabilizing or destabilizing the flow. In  particular, the case of low- 
frequency oscillation may have important applications and thus needs c 3  be examined. 

The remainder of this paper is divided as follows: The basic flow and the formulation 
of the stability problem is described in $ 2 .  The method of solution of the stability 
problem by a combination of numerical and perturbation techniques is described in 
5 3. The numerical results for the stability problem are discussed in 5 4. Some concluding 
remarks are made in 3 5.  

2. Formulation 
The two-dimensional flow of a viscous, incompressible, homogeneous fluid between 

infinite parallel plates is considered. A Cartesian co-ordinate system (x’, y’, 2 ’ )  is 
placed with its origin halfway between the plates. The y’ = 0 plane is parallel to the 
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plates. The plates intersect the y‘ axis a t  the values of & ?L. The basic motion of the 
fluid is forced by the combination of the spatially and temporally constant pressure 
gradient -Poi and the time periodic and spatially constant pressure gradient 

- Q0 cos wt‘i. 

The unit vector i is tangent to the x axis and w is the angular frequency of the imposed 
oscillation. 

The flow variables are appropriately scaled by the length h, the velocity Uo = h2Po/2v, 
where v is the kinematic viscosity of the fluid, the time h/Uo and the pressure pU;, 
where p is the density of the fluid. Then the basic fluid velocity V and pressure P are 
given by (with x’ = hx, etc.) 

v = ( U ( y ) + A W ( y , t ) , 0 , 0 ) ,  ( la)  

( 1  b )  

U(Y)  = 1-Y2, P a )  

2x 
R P = --(1+AcosRt), 

where 

and where i = J-  1, R = Uoh/v is the Reynolds number, A = &,/Po is the pressure 
ratio, A = A/P2 is the ratio of the amplitude of the oscillatory to steady velocity, 
p = h/S is the ratio of the channel half-width to Stokes-layer thickness 6 = ( 2 v / w ) t  
and s2 = .hw/Uo = 2P2/R is the dimensionless frequency of the imposed oscillatory 
pressure gradient. It is important to note that at large values of the angular frequency 
w the Stokes layers are relatively thin, i.e. /3 is large and hence the ratio of oscillatory 
to steady velocity A is very small even for fairly large values of the pressure gradient 
ratio A. A high frequency in this context would be the frequency of the principal 
disturbance modes near the critical point a,, R, of the underlying steady flow for 
which p E 28. 

The basic state (1) is infinitesimally disturbed and the resulting velocity and 
pressure field must satisfy the constant-density Navier-Stokes equations. Upon 
linearizing these equations in the usual way of linear stability theory and restricting 
the disturbances to be two-dimensional and in the plane of the basic motion one 
obtains for the velocity perturbations v = ( u , v )  and pressure perturbation p the 
equations 

&/at + ( U  + A W )  i .  V v  + v .V(  U +  AU’) i = - V p  + R-lV2v, (3a)  

v.v = 0,  ( 3 b )  

u = v = 0  a t  y = + l ,  (3c)  

where V = i a/ax + j a/ay and j is a unit vector tangent to the y axis. A Squires theorem 
guaranteeing that the critical Reynolds number occurs for a two-dimensional dis- 
turbance can be proved (see von Kerczek & Davis 1974). 

The disturbance equation (3) admits normal mode solutions of the form 

( u , v , p )  = W(Q(y,t),^o,j3)eiux. (4) 
4‘2 
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It is most convenient to work with the stream function @(x, y, t ) ,  where 

@(x, Y, t )  = $(y, t )  eiax, (5) 

and from which the velocit,y mode functions (a,$) can be calculated by the formula 

Accordingly, the two-dimensional disturbance equation (3) becomes the time-depen- 
dent Orr-Sommerfeld equation 

where 
a2  

aY2 
9 =--a2. 

When the velocity amplitude ratio A is equal to zero, equations (7 )  describe the 
stability characteristics of steady plane Poiseuille flow. I n  this case let h(t,o) be the 
complex growth rate of the lth disturbance mode. 

These modes are ordered in such a way that ascending values of I ,  starting with 
1 = 1, correspond to descending values of 9(h(l,o,). The main objective in this work is 
to compute the change in the complex growth rate as the value of the ratio A 
increases from zero. 

By the analogy with Floquet theory for ordinary differential equations (see Codding- 
ton & Levinson 1955) solutions of equations (7) will have the form 

$(Y, t )  = g(y, t )  eAt,  (8) 

where g(y,t) is a function that is (27r/Q)-periodic in time. The possibility that the 
mode function g(y,t) in equation (8) is not time-periodic does not have to be con- 
sidered here because the eigenvalues h(l,o) of the underlying steady basic state are 
distinct (see Grosch & Salwen 1968). I n  any case, the stability (instability) of the flow 
is determined by the condition that 92(&) < 0 2 0) .  

3. The method of solution of the stability problem 
The method by which equations (7) are solved, in the form of equation (8) is a 

combination of a numerical and perturbation procedure in which the Floquet exponent 
h and the eigenfunction g(y, t )  are computed as series in the velocity amplitude ratio A. 

Both the steady flow velocity profile U and the time-periodic velocity profile W 
are symmetric with respect to the y = 0 centre-line of the channel. Hence, solutions 
of equations ( 7 )  are either symmetric or antisymmetric with respect to y = 0. Such 
solutions can be treated separately. It has been shown numerically by Grosch & 
Salwen (1968), Orszag (1971) and others that  the only unstable mode of steady plane 
Poiseuillc: flow is an even eigenfunction of equations (7)  with A = 0. Thus, the main 
concern in this investigation is the effect of the basic flow oscillation on these sym- 
metrit. eigenfunctions. However, the effects of oscillation on the antisymmetric eigen- 



Instability of oscillatory plane Poiseuille flow 95  

functionii have also been explored briefly. It was found that the symmetric flow 
oscillation induced by the time periodic pressure gradient has almost no effect a t  all 
on the antisymmetric eigenfunctions. Hence, no further discussion of this class of 
solutions of equations (7) is necessary. 

The first step used to solve equations (7) is their reduction to a system of ordinary 
differential equations in time by a Galerkin-like method. The stream function $(y ,  t )  
is expanded in a Chebyshev polynomial series (see Orszag 1971) with time dependent 
coefficients as follows : 

N 

n= 1 
4(Y)  4 = x a,(t) T,n-AY)9 (9) 

where T',(y) = cos (m cos-l y), m = 0,1 ,2 ,  . . . are Chebyshev polynomials of the first 
kind. Since only the even Chebyshev polynomials are used in equation (9) the sym- 
metry conditions $, = $,,, = 0 a t  y = 0 are automatically satisfied. Hence, only the 
boundary conditions 4 = 4, = 0 a t  y = 1 need to be imposed on equation (9).  

By using the .r-method as described by Orszag (1971) and by using the boundary 
conditions 4 = 4, = 0 a t  y = 1 to relate the coefficients uN and aN-l to  the remaining 
coefficients a,, . . ., aN-,, the system of ordinary differential equations 

(10) 
da 
at Q.- = (P- ia:J) .a- iaAV.a  

is obtained. The system ofequations (10) approximates the equations (7) withincreasing 
accuracy as N + 03. In  equation (10) the vector a = ( u , ) ~ ,  where the ui, i = 1, . . .) N - 2, 
are the expansion coefficients of equation (9) and the superscript dagger denotes a 
column vector in which the free index designates the components of the vector. The 
( N  - 2) x ( N  - 2) term matrices Q, P, J and V are the representations of the operators 
9) R-192, ( U 9  - Uva) and (W9 - W,,), respectively, together with the boundary 
conditions (7b) in the Chebyshev basis To, T,, ...) T,-vv-2. The matrices Q ,  P and J are 
constant and Q is invertible, whereas the matrix V is (2n/Q)-periodic in time. One 
can easily obtain numerical solutions of equation (10) by numerical time integration 
and use of the Floquet theorem slthough such a procedure incurs a considerable 
computational expense (see Grosch & Salwen 1968; von Kerczek & Davis 1974). 
Since the main objective in this work is the determination of the Floquet exponent h 
as A increases from zero, a perturbation method to  construct a series solution in A 
will be used. It will be shown that it is not difficult to compute a considerable number 
of terms of this series and, with the aid of certain summation techniques, to calculate 
accurate values of the exponent h for values of A as large as 4. 

The general theory of perturbation techniques for calculating the Floquet exponents 
of systems of equations of type (10) are reviewed in the book of Yakubovich & Star- 
zhinskii (1975). A simpler direct method of expansion for the special case when the 
matrix (P - ia: J) has a simple spectrum will be described here. 

A preliminary step is performed in order to make subsequent calculations simpler. 
First equation (10) is left-multiplied by the inverse 0 - 1  of the matrix Q. Let B be 
the matrix that diagonalizes the matrix Q-1. (P - iaJ).  Then the new vector of un- 
known coefficients b is defined by the equation 
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By substituting equation (11) into equation (10) and by left multiplying the resulting 
equation by 8-1 the equation 

(12) 

113a) 

( 1 3 b )  

_ -  db - D.b+AE.b 
at 

is obtained, where 
D Be'. Q-l. (P - ia J )  . B [A(,,,,, . . . , A(lv,o)], 

E E - iaB-1. Q-1. V.  B E(1) eiQt + Ef-1) e-iQt 

and where [Av,,)] designates a diagonal matrix. The matrices E(l) and E(-l) are complex 
constant matrices and N' = N - 2. 

At this point of the exposition it is necessary to describe the system of notation to 
be used in the rest of this paper. The following analysis will deal with lengthy multiple 
sequences of vectors and it is important to distinguish between the subscripts and 
superscripts tha.t denote the position of a vector in a sequence and those that denote 
a component of a vector. Hence, superscripts and subscripts that  designate a term 
in a sequence will be enclosed in parenthesis but a subscript that  designates a compo- 
nent of a vector (or matrix) will stand free outside of the parenthesis. However, a 
special exception should be noted for the sequence of coetikients A(l, j). This sequence 
of coefficients and the corresponding sequence of values ytr, jf (to be defined later) will 
also form the elements of a diagonal matrix and will then occur in formulae in which 
one of the indices is summed with corresponding components of a vector (see formulae 
(26) and (28)). However, the context should make clear the role that each of the sub- 
scripts play. The index 1 will be especially reserved to denote the disturbance mode 
of the steady flow stability problem about which the perturbation due to the imposed 
oscillation is calculated. Hence 1 denotes a fixed integer. The summation convention 
for repeated indices will not be used. 

The solutions b(t) of equation (12) must have the form 

b(t) = z(t)eAt, (14) 

where z(t) is 2n/Q-periodic in time. The solution (14) is to be computed in terms of 
the oscillation-induced perturbations to the individual steady flow disturbance modes 
za,,,exp (Aa,o)t). Hence, b(t) is expanded in a series of powers of A as follows: 

Z(,,(t) = Z(l0) + AZ(l1, + A2zw + * * * 9 

4,) = 4 0 )  + A4l1, + A24/2) + * .  ' . 

(15a) 

(15b) 

By substituting the series (1 5 )  into equations (14) and (1 2) and collecting terms corres- 
ponding to each power of A yields the following system of perturbation equations: 

dz(io) -- (D - A(,,, I )  . zoo) = 0, 
at 
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where I is the unit matrix. Note that the constant coefficient matrix of these equations 
is the diagonal matrix 

where 
D - A(,,, I = fY(I1b - * 9 Ye, N31, 

y(lj) = A(jo) - A(,,) for j = 1, . . . , N' .  

The only possible 2n/ClZ-periodic solution of equation (16) is 

%O) = ( W l  (18)  

where 13,~ is the Kronecker delta and 1 is a fixed integer. The reason for this is that  
yaS = 0 and Y ( , ~ )  =k -t imQ when 1 += j and m is an integer. 

Since the solution vectors zQj), j = 0, 1 , 2 ,  . . ., must all be 2n/Q2-periodic, the inner 
product (f, 9) defined by 

will be needed. The superscript * denotes complex conjugation. Furthermore, the 
eigenfunction y(l,o) of the equations adjoint to system (16) will also be needed. This 
adjoint eigenfunction is 

Ys,o, = (JJ. (20) 

The solution of any one of the equations in the set (17)  can be obtained from the 
solution of its preceding member in the set by the application of the Fredholm alter- 
native and the requirements that these solutions be unique, i.e. they do not contain 
arbitrary multiples of the eigensolution z(~ ,~) ,  and that they are 2n/Q-periodic in time. 

Let the right-hand side of equation ( 1 7 c )  be designated as h( j ) ( t )  and note that 
h( j ) ( t )  can be represented by a Fourier series. Thus, let 

W 

where the vectors h(ik) are constant vectors and the lth component, h(jo,l,  of the vector 
h(io) is zero. This property is enforced.by the solution procedure for equations (17) .  

I n  order that equation (17c)  has a solution, the vector h&) must satisfy the ortho- 
gonality condition 

<h(j)@), Y(l0,) = 0. (22) 

The satisfaction of this condition is achieved by properly selecting the value of the 
parameter A(lj) .  Then the general solution of equation (17c)  can be written as 

qlj) = eIY(l,i)lt g o  + e-[r(l, i ) l s .  h(,,(s) ds . (23) ( 1; I 
Formula (23) is easily evaluated because the matrix [ Y ( ~ , ~ ) ]  is diagonal. By requiring 

that ql j ) ( t )  be unique and (2n/fi)-periodic in time values of to are obtained which 
eliminate all the non-(2n/R)-periodic functions and the multiples of the vector z ( ~ ~ )  
from the solution zUj). The result of this calculation is 
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The solutions of the entire set of equations (17) can now be obtained in sequence, 
starting with equation (17a), by first computing the right-hand side h(j), then calcu- 
lating the required value of A(2j)  using equation (22) and then calculating the solution 
zOj) by equation (24). The most laborious aspect of this computation is the calculation 
of the vector h(jk). A procedure has been coded (in Fortran IV) to compute M = 40 
terms of the series (15). More terms can be computed by simply changing certain 
dimension statements in this code, but 40 terms (with N = 35) seemed to be the 
largest number that the storage capacity of the DEC-10 computer system could 
accommodate conveniently. The first two perturbation terms of the series (15) are 
given below to illustrate the form of these solutions: 

421, = 0, (25a) 

where 

and where 

Note that the order-A perturbation A(,l) of the eigenvalue A(lo) is zero so that the 
long-term effect of the flow oscillation with amplitude A is only of order A,. In fact, 
all the odd-order perturbation coefficients A(lj,, j = 1,3,5, . . . , are zero because each 
eigenvalue A(2o) of the steady Orr-Sommerfeld equation for plane Poiseuille flow is of 
multiplicity 1 and AX,, is not a simultaneous eigenvalue. If A;,,) were also an eigenvalue 
of this same equation, as occurs for plane Couette flow above a certain value of 
the Reynolds number, then the odd-order coefficients A(l , i ) , j  = 1,3 ,5 ,  . . ., would not be 
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zero. The examination of the eigensolutions (26), (27) and higher-order terms reveals 
t)hat the quantities niR  sf^ y(w for n = 1, . . . , N appear in the denominators of these 
solutions. If niR k y(zm) = 0 for some values of n and m then resonance a t  the nth 
harmonic of the difference frequency 9(h(,,) - occurs. I n  the case considered 
here niR f y(lm) + 0 for any value of m or n because L%'y(im) + 0 for all values of m 
except for m = I ,  but then y(u) = 0. However, it might be expected that values of R 
near possible resonance, i.e. 9(niR to be 
large. It will be shown later that this does not seem to occur. 

It cannot be expected that the series (15) is convergent for all values of A. Estimates 
of the ra,dius of convergence of series (15 b )  can be obtained by computing the Neville 
table (see Gaunt & Guttmann 1974) from the coefficients h,,),j = 0, .  . ., M. The Neville 
table (which is a generalization of the Domb-Sykes plot) also yields estimates of the 
actual value of the nearest singularity and its exponent, but this information will not 
be used here (see Van Dyke 1974, for techniques of analysis of series coefficients in 
fluid mechanics). 

The value of the function h(,,(A) caa be obtained for the values of A well beyond the 
radius of convergence of the series (15 b )  by recasting it into different kinds of approxi- 
mations. For example, the series ( 1 5 b )  can be recast into various Pad6 fractions 
which yield the same order of approximation of &(A) as the series (15b) near the 
origin A = 0 and possibly better approximations of h(,)(A) for larger values of A. 
Alternatively, the nonlinear sequence transformations for summing series, such as 
Shanks' transformation (Shanks 1955), can yield accurate values of &)(A) from the 
series (15 b )  well beyond its radius of convergence. 

Recently, Vanden-Broeck & Schwartz (1979) have given a very simple one-para- 
meter family of sequence transformations for summing a M-term series that has the 
Shanks transformation and the values of the entire K / L  ( K  + L+ 1 = M )  Pad6 table 
imbedded in it. In  the present work the sequence of partial sums of series (15b) for 
specific values of A were transformed using several members of the Vanden-Broeck- 
Schwartz family of transformations. It was found that the Shanks transformation, 
given by 

y(lm)) = 0, may cause the values of 

where 

invariably gives the best results. The triangular table of values S(n,nL) is expected to 
convergence along the diagonals. The element S(p,p), where P = [&MI + 1, at the apex 
of the triangular array S(n,m) of numbers is assumed to be the value of the function 
4,w. 

4. Computational results 
There are four independent dimensionless parameters, a, R, /3 and A, in this stability 

problem. Thus, it  is difficult to map completely the stability characteristics of OPP 
flow in this parameter space. Instead, only a sample set of results were computed in 
the parameber range which seems to  provide a fairly good picture of the effects of 
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FIGURE 1. The value of the principal disturbance growth rate a ( h , )  as a function of A for various 
values of fi = ol/n at R = 5772.22, a = 1.0206. The values of &?(A,) for fl = 3 that were 
obtained by numerical time integration are denoted by x . The values of W(A,) forfi = 3 t h a t  
were obtained by the simple sum of the series (14b)  are denoted by 0 .  

oscillating the plane Poiseuille flow. The values of the parameters that were chosen 
correspond'to ways in which the oscillation of plane Poiseuille flow might be imposed 
experimentally. For example, the effects of the oscillations on the stability character- 
istics were examined for fixed values of the dimensional oscillation frequency (i.e. @ 
is fixed) rather than for fixed values of the dimensionless frequency R. Similarly, when 
examining the effects of oscillation amplitude a t  fixed values of p but various values 
of R, it seems that i t  is best to keep the dimensional pressure gradient Qo fixed a t  the 
value of Q,. Hence, the dimensionless pressure gradient amplitude A varies as 
h = h,R,/R where A, is the reference value of A corresponding to  Q, a t  the value of 
Reynolds number R,. In this case, the oscillation amplitude A varies like A = A, Rf/R 
where A,= 2Af/p2. For these reasons some of the results presented below are not 
directly comparable with the results of Grosch & Salwen ( 1968). 

The first set of results to be described concern the effects of the imposed oscillation 
on the disturbance modes of the steady flow a t  the critical point a = a, = 1.0206, 
R = R, = 5772.22. Figure 1 shows graphs of the growth rate, 9 ( A ( l ) ) ,  of the principal 
disturbance mode as a function of the oscillation velocity amplitude ratio A. Graphs 
for various values of the disturbance to imposed frequency ratio w J Q ,  where 
o1 = 9(A( l ,o ) ) ,  are shown in the figure. These numerical results were obtained with 
M = 20 to 40 terms of the series (15). The two arrows in figure 1, which are designated 
Ao2 and Ao3, indicate the radius of convergence of the series ( 1 5 b )  for the cases wl/Q = 2 
and 3 respectively. The values of Aoz and Aos as well as similar values for all the other 
cases in figure 1, were computed by calculating the first three columns of the Neville 
table. The first column of the Neville table corresponds to linear extrapolation to a 
value of 1/M = 0 of the points of the Domb-Sykes plot (see Van Dyke 1974). Snbse- 
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I 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

.%A'<I,d 
- 0.000 000 4D - 02 
- 0.219078 8D + 00 
- 0.494692 5D + 00 
- 0.166 5550D + 01 
- 0.331 217 6D + 01 

0.291 2503D + 02 
0.555 15541) + 03 
0.616 581 9D + 04 
0.564 109 7D + 05 
0.454 498 2D + 06 
0.3253154D + 07 
0.200681 1D + 08 

- 0.946 854 3D + 08 
0.139 251 5D + 09 

- 0.403 872 8D + 10 
-0'706 191 1D+ 11 
-0'8120626D+ 12 
-0*7744830D+ 13 
- 0.646 13541) + 14 
- 0.473 393 9D + 15 
- 0.292 947 3D + 16 

.a(h'(,,jJ ( j  = 21- 2) 

- 0.269 444 9D + 00 
0.293 737 6D - 01 
0.333 788 11) + 00 
0.2707253D+Ol 
0.201 642 8D + 02 
0.1392865D + 03 
0*8725125D+03 
0.465 392 5D + 04 
0.168228 1D+05 

- 0'303 990 7D + 05 
- 0.146619 7D+ 07 
- 0.198 587 3D + 08 
- 0.204 369 OD + 09 
-0.180407 l D +  10 
-0'1405346D+ 11 
- 0.954 924 2D + 11 
- 0.528 638 7D + 12 
-0*1732335D+ 13 

0.8907986D+ 13 
0.255003 l D +  15 
0.3343126D+ 16 

TABLE 1. The coefficients of series (15b) for a = 1.0206, R = 5772.22, 
w,/R = 3.0 (p  = 16*1), N = 28, A(1,j) = 2'A'(1,j) 

quent columns of the Neville table represent higher-order extrapolations of these 
points. The last value of each of the first three columns of the Neville table, in each 
of the cases graphed in the figure, agreed to a t  least three significant figures. It was 
found that this procedure of estimating the radius of convergence of the series (15 b )  
is very accurate. I n  all the cases that were examined, Cauchy convergence of the 
partial sums of series (15 b )  could be achieved to a t  least four or five significant figures 
for values of A up to about 95 % of the values A,, where A, designates the predicted 
value (by the Neville table) of the radius of convergence of series (15 b) .  In  the worst 
case, that of w1/Q = 3, convergent values (at least in the Cauchy sense) of 
could be obtained for values of A up to 135 % of the value of Ao3 by applying the Shanks 
transformation to series (15b). Table 1 gives the coefficients A(l,j) for the case wl/Q, = 3, 
a = a,, R = R,, N = 28 and M = 40. These coefficients were obtained in multiple 
precision (25 decimal digit mantissa) and rounded to 7 significant figures. Figure 1 
shows values of 9 ( A ( l , ) ,  for the case wl/Q = 3, that were obtained by a numerical time 
integration of the differential equations (12). These values are designated by crosses. 
Note the excellent agreement of these values of with the values predicted by 
the convergent terms of the Shanks-transformed sums of series (15 b )  up to values of 
A = 0-225. 

The significance of the results shown in figure I is that, in the frequency range 
R > & w1 (recall that w1 = 0.2694) the imposed oscillation has only a stabilizing effect 
on the principal disturbance mode of the underlying steady flow. The fairly low- 



102 C. H. von Kerczek 

1 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

Ao, 0,  

0.0 +i 0.2694 
- 0.0467 + i  0.9736 
- 0.0839 + i 0.9360 
-0.1211+i 0,8983 
-0.1555$i 0.4119 
-0*1583+i 0.8607 
- 0.1955 + i 0.8230 
-0.2126+i 0'2324 
- 0'2327 + i  0.7854 
- 0.2492 +i 0'5637 
- 0.2689 + i 0.7484 
- 0'2762 + i 0.4520 

%(&2,2,) 

o(10-9) 
O( 10-8) 
o(10-7) 

O(10-6) 
o(10-4) 

-0.1072 

-0.3124 

0.5152 
- 0.0012 

0.140 
- 0.0072 

0.0852 

W(42,4,) 
0.3056 
o(10-9) 
O(10-8) 
O(10-6) 

O( 10-6) 
o(10-3) 

1.699 

- 0.7184 
0.016 
0.0528 

- 0.0144 
- 1.696 

TABLE 2. The first twelve, mean-flow disturbance exponents and the corresponding first two, 
non-zero pert,urbations of the exponent %(Ao,) for = q, a = ac, R = R, and /l = 27.89 

frequency cases Q c w,/10 result in a slight destabilization of the principal disturbance 
mode. These results will be discussed later in this section. 

Grosch & Salwen (1968) assert that this flow a t  a = a,, R = R, becomes unstable for 
wl/ f i  = 1 and A = 0.105 because one of the higher stable modes of the underlying 
steady flow is strongly affected by the imposed oscillations. In  order to test this claim 
calculations were made to determine &)for I = 1,2,  . . ., 12. Table 2 lists the first twelve 
eigenvalues Ao,o) (obtained with N = 34 terms in the Chebyshev expansion, (9)).  One 
should note that all except the fifth, eighth and twelfth are high-frequency modes 
compared to the first mode. Furthermore, all the disturbances except the first are 
fairly heavily damped and thus would require fairly large values of B(A(l,2)) to be 
significantly altered for such a small value of A as 0.105. Table 1 also lists the first two 
perturbation coefficients to the damping rates, B(A(,,2)) and 9??(A(z,4)), for each of the 
first twelve modes and for the value of s1 = wl.  The high-frequency disturbance modes 
are essentially unaffected by the imposed oscillations and although mode 8 has its 
damping rate reduced none of these disturbances are destabilized. The decay-rate 
perturbation 9??(A(8,2)) A2 is too small to overcome the very strong damping 

B ( A ( g , o ) )  = - 0.2126 
of mode 8. 

For each of the modes listed in table 2 a t  least M = 14 (i.e. the first seven even 
coefficients that 
were computed for each case was sufficient to yield converged values (with the help 
of the Shanks transformation) of A(z) from series (15b) for values of A a t  least as large 
as 0.3. The first two terms, B(A(l,21) and B(A(z,4))  shown in table 2 are adequate for 
computing accurate values of B(A(z,) for values of A up to a t  least 0.15. 

None of the modes in table 2, except the first, is significantly altered for values of 
A up to a t  least 0.3. On the basis of these results (and also many other similar results 
that were obtained a t  other values of a, R and ,8) it is safe to conjecture that none of 
the infinite set of higher modes is significantly affected by the imposed oscillations. 
Thus, these calculations indicate that sinusoidal oscillation with amplitude A < 0.3 of 
plane Poiseuille flow at R = R, and with frequency fi = w1 has an overall stabilizing 
effect on the significant disturbance modes with wavenumber a = a, .  Higher modes 

terms of series (15b) were computed. The number of terms 
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w , P  P W ( L  2)) W@o* 4)) 

& 39.44 - 0.01 1 04 0.019 8 
t 55.77 - 0.001 32 0.000 64 
4 78.87 - 4.22 x 10-5 o m  x 10-5 
-1- 111.5 1.15 x 10-5 - 3.5 x 10-7 1.3 

TABLE 3. High-frequency perturbation coefficients for a = a, and R = R, 

are not strongly affected by the imposed oscillations because of a t  least one but usually 
two of the following reasons. The first reason is that the disturbance frequency is so 
high that there is too large a mismatch between it and the oscillation frequency. 
Secondly, if the oscillation frequency is as high as the disturbance frequency, then the 
imposed oscillation vorticity is too closely confined to the boundaries to have an 
effect on the disturbance. A third reason is that the disturbance is so heavily damped 
without the oscillation that the small oscillation-induced perturbation cannot over- 
come this natural damping. 

The effects of very-high-frequency imposed oscillations on the principal disturbance 
mode a t  a = a, and R = R, are shown in table 3. These results show that by increasing 
the frequency of the imposed oscillations to very large values the oscillatory flow 
becomes less stable than the steady plane Poiseuille flow. This result is in accord with 
Hall’s (1974) result that for very large values of p the critical Reynolds number 
R,, of the oscillatory flow is lower than R, by the amount 

R,,- R, = - (21*7/p)5 R,A2. (31) 

It can be shown (see equation (38) below) that for small values of A and any values 
of /3 the difference between R,, and R, can be obtained from the formula 

By evaluating both of these formulas with the value of /3 = 111.5 (see tables 3 and 4) 
one obtains for (RSc-- R,)/A2 the value of about 1.6 from equation (31) and the value 
of about 7 from equation (32). These values are not inconsistent and may indicate that 
Hall’s formula (31) is only valid for values of /3 that are very large. 

At this point the question of the resolution of the very thin Stokes layers that are 
present for large values of p must be discussed. Gottlieb & Orszag (1978) show that 
boundary layers of thickness S at the ends of the interval - 1 < y < 1 are resolved to 
within a 1 7. maximum pointwise error by Chebyshev expansions with N = 0 ( 3 / J S )  
terms. Thus for the value of p = 11 1.5 it would seem that N = 32 would adequately 
resolve the thin Stokes layers (6 = O(l/p)) a t  the walls of the channel. Some tests of 
the variation of the values of 9 ( A ( l , 2 ) )  with truncation number N were performed. 

For the cases w l / Q  = 3 and 4 there was no variation of the values of 9 ( A ( l , 2 J  or 
&?(A(, 4)) from the values shown in table 3 for N = 28, 32 and 34. The values of W(A(,,J 
and &?(A(l,4)) for wl/Q = 4 and Gg shown in table 3 were obtained using N = 35 terms 
in the Chebyshev expansions. For N = 32 Chebyshev terms the values of 

and 
@(A(l,2)) = - 0.417 x 10-4 and 1.19 x 

9(A(l,4J = 7.31 x 10-6  and - 3.6 x lo-’ 
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FIGURE 2. The values of .%?(A(,, .J, L2(A(l,4)) and B(A(l,6)) as a function of wl/O for R = 5772.22 
and 01 = 1-0206.j = 2, --, C e -  - 2 . 5 ; j  = 4, - - -  9 C 4 -  - 0.625;j  = 6, - *  -, C, = >Ic. 

were obtained for w,/Q = & and & respectively. These numerical results do seem to 
indicate that convergence to  a t  least one significant figure has been attained. 

for i = 2 , 4 , 6  in the expansion (15b) of A(,) a t  
a = a, and R = R, versus the frequency ratio ol/Q. These results were computed in 
order to study the behaviour of the principal disturbance mode as a function of 
frequency of the imposed oscillations. Figure 2 shows that there seems to be no identi- 
fiable resonance between disturbances and the imposed oscillation. Higher-order 
perturbation coefficients, i > 6, were also computed but are not shown because 
they do not reveal any particular resonance responses either. Thus, the apparent 
optimally stabilizing frequency of wl/Q x 3 indicated in figure 1 is not due to  any 
identifiable resonance mechanism. 

It has been mentioned in the introduction that i t  is of interest to examine the effects 
of fairly-low-frequency imposed oscillations. Thus, some special calculations were made 
for values of wl/Q = 14, 18 and 22. Figure 1 shows the changes in the values of B?(A(,)) 
a t  a = q and R = R,. The first eigenmode A(,) is the only one significantly affected by 
the imposed oscillations even a t  these very low values of frequency Q. I n  these cases, 
the flow is slightly destabilized. It is important to note that the Floquet exponents 
A(l) are measures of the average long-term growth (or decay) of disturbances. But the 
Floquet exponent gives no indication of the transient behaviour of a disturbance 
during one cycle of the imposed oscillation. It has been observed by Rosenblat & 
Herbert (1970), Finucane & Kelly (1976) and Davis (1976) that at very-low-frequency 
modulation of a flow it may be much more important to examine the instantaneous 
relative magnitude and growth rate of a disturbance rather than the Floquet exponent. 
The reason is that it is possible for disturbances to reach very large instantaneous 
amplitudes in the early stages of their existence even though over many cycles of 
modulation they deray in amplitude (see, for example, Finucane & Kelly 1976). Thus, 

Figure 2 shows the graphs of 
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for the case of w1/Q = 14 and A = 0.25 in figure 1, the disturbance equations (12) 
were integrated numerically over one period 27r/Q of the imposed oscillation. 

The disturbance eigenfunction z(,)(t) can be computed directly by the series (15) 
since all the vectors ~ ( , , ~ , ( t ) ,  i = 0, .. ., M ,  are always calculated along with the coeffi- 
cients A(l,t). However, the evaluation of the series (15a) is a non-trivial task in view 
of the necessity of summing each component using the Shanks transformation. Hence, 
it was deemed much simpler and computationally not too expensive to simply inte- 
grate equation (12), starting with arbitrary initial conditions, over several periods 
27r/Q. Eventually, the principal mode z(,,(t) will emerge from this numerical integra- 
tion. In  fact, the principal mode emerges after only one period of integration. Hence, 
the time history of the solution z( t )  obtained in the second period of integrating 
equations (12) is an excellent approximation of the principal mode q1)(t). A numerical 
check of this result is available. Let a designate the Euclidean norm 

of the vector q1)( t ) ,  where x,, n = 1, . . ., N ,  are the components of the vector z(,)(t). Then 

for K -+ co. Condition (34) was found to be satisfied to three significant figures a t  the 
end of the second period K = 2 compared with the value of A(l) computed by series 
(15b) and the Shanks transformation. Furthermore, the numerical integration of 
equations (12) was continued over the third complete period 27r/Q. The computed 
values of a(t) and G(t) (defined below) differed by less than one figure in six from the 
values of a and G a t  corresponding instants of time in the second period. 

Figure 3 shows the time history of the logarithm (base 10) of a(t) of the mode z(,,(t) 
over one period 27r/Q of the imposed oscillation. It can be seen that the disturbance 
zl ( t )  first decays to a rather small value over the first half of the period and then 
grows again over the second half of the period. It is noteworthy that this disturbance 
changes its magnitude by a factor of lo4 over the second half of the period. This 
indicates that if the flow is disturbed in the early part of the second half of the imposed 
oscillation cycle by a moderate amplitude disturbance (but one that may still be 
considered within the realm of linear theory) then such a disturbance would grow to 
be so large before the end of the period as to probably lead to transition to turbulence 
or a t  least to nonlinear oscillations of the flow. 

It is of interest to determine if the decay and growth of this disturbance is mainly 
a response to the quasi-steady stability characteristics of this flow or whether the 
disturbance’s response is influenced by other factors. Hence, the instantaneous growth 
rate G(t) defined by 

1 a€ 
G(t) -- 

E at (35) 

was also computed. Figure 4 shows the graph of G ( t )  versus t over one period 27r/Q. 
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FIGURE 3. The time history of the logarithm of the disturbance norm t ( t )  (see (34)) over one 
period of the basic flow oscillation for ol/n = 14 at  R = 5772.22, a = 1.0206, A = 0.25 
(T = 2 n / o , ) .  

The points designated by the dots are the values of the principal quasi-steady growth 
(or decay) rate 

a@): = max ( 9 2 ~ ~  I aj = any eigenvalue of Q-' . [ P - i a  J -iaAV(t)l). 

of the oscillating flow, where 

( 3 6 )  

Although the average behaviour of the instantaneous growth rate G ( t )  roughly 
follows the behaviour of the quasi-steady growth rates, there is a significant difference 
between these quantities. I n  particular, the erratic behaviour of G in the first quarter 
of the oscillation indicates that  the disturbance undergoes some kind of internal re- 
adjustment in the beginning of each cycle of the imposed oscillation. This internal 
readjustment can be attributed to mode crossings of the quasi-steady eigenvalues aj 
in equation (36). At the value of t  = 0, a = Wrr, = 9( - 0.04 + i0.48), but a t  t = 0.1 8T 
(where T = 2n/w,) the second quasi-steady mode, a2 = - 0.047 + il.0, suddenly be- 
comes the least stable and remains so until t = 3.7511. During this time interval the 
first quasi-steady mode has the value a, 2: - 0.05 + i0.4. For values of t > 3-75T the 
first mode al becomes dominant again and by the time t > 6 T  it becomes unstable. 
The value of the second mode's decay rate remains about -0.05 throughout the 
oscillation cycle. The high-frequency oscillations between t = 0 and 4T of the solution 
of the unsteady stability problem is probably due to the second quasi-steady mode 
(possibly interacting with the first mode) whose frequency is roughly three times the 
frequency of the first mode. It seems clear that  the behaviour of the disturbance is 
dominated by a combination of the quasi-steady growth rates. However, the main 
point is that the transient behaviour of a disturbance can be very dmgerous (in the 

l$i<iV 
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FIGURE 4. The time history of the instantaneous growth rate G ( t )  (see ( 3 5 ) )  for q / C 2  = 14 at 
R = 5772.22, Q = 1.0206, A = 0.25 (T = 27r/w,). Note that ( b )  is a continuation of ( w ) ,  ( c )  a 
continuation of (b )  and ( d )  a continuation of ( c ) .  

sense that the flow may readily undergo transition to turbulence) even though the 
long-term average growth rate of the disturbance is very small. 

The only experimental results describing the behaviour of small disturbances in an 
oscillatory shear flow that are available are the measurements by Miller & Fejer (1964) 
and Obremski & Fejer (1967). These studies were concerned mainly with measurement 
of laminar to turbulent transition of the oscillatory flat-plate boundary layer. Hence, 
their results are not directly related to anything studied in the present paper. How- 
ever, Obremski & Fejer did observe in some of their experiments what appear to be 
intermittently growing and decaying wavelike disturbances that were precursers of 
turbulent bursts. I n  these cases, the imposed oscillation frequencies were very low 
compared with the disturbance frequencies. I n  the notation used in this paper, the 
values of w l / Q  in their experiments were about 50. A rough comparison of the low- 
frequency, q / Q  = 14, results for plane Poiseuille flow and the very-low-frequency 
results of Obremski & Fejer can be made. For example, figure 5 of Obremski & Fejer 
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FIGURE 5. The shift of the nose of the neutral curve due to  the oscillations 
for Af = 0.05 and 0.15 (/3 = 16.1). 

shows wave-like disturbance beginning to appear slightly ahead of the minimum 
velocity near the edge of the basic flow. These disturbances then appear to grow and 
to persist as the basic velocity increases, i.e. during the early part of the acceleration 
of the basic state. The centre-line velocity of OPP flow is mainly proportional to 
sin RZt for large values of /3 (/3 = 7.453 for wl/R = 14). Figure 14 shows that the in- 
stantaneous growth rate G of the disturbance becomes positive near the value of 
t = 7 T  (i.e. near t = ./a). Thus the large transient growth of the disturbance occurs 
in the time interval n/Q < t < 27r/aZ. This is the part of the oscillation cycle in which 
the centre-line velocity is lower than the mean velocity. Furthermore, Obremski & 
Fejer report that complete transition (i.e. turbulence persisting for the entire oscilla- 
tion cycle) occurs a t  a slightly smaller value of the mean Reynolds number than the 
value of transition Reynolds number of the steady flow. This behaviour is not incon- 
sistent with the slight mean destabilization that occurs by oscillating the flow with 
frequency R = 0,/14. 

It is of interest to determine the shift of the neutral stability curve of steady plane 
Poiseuille flow, that results from the imposed oscillations. Such a calculation was 
made for a fixed value of /3 and for A = A, RJR. The value of A, was chosen arbitrarily. 
This variation of the relative oscillating pressure gradient amplitude corresponds to 
a constant absolute value of the oscillating pressure gradient amplitude Q, for all 
Reynolds numbers R. The results of this calculation are shown in figure 5 .  Here the 
value of p is 16.1 corresponding to wl/Q = 3.0 a t  a = ac and R = Rc. This value of /3 
was chosen because it gives the biggest change in growth rate of the principal steady- 
flow disturbance a t  the critical point. The dashed curve in figure 5 is the change in 
the neutral curve for A, = 12.96. This value of A, corresponds to the value of A, = 0.05 
(recall A = A/P2). For these small values of A it  is sufficient to calculnt!e only the first 
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a 

0.6 
0.7 
0.8 
0.9 
0.95 
1.0 
1-0206 
1.05 
1.07 
1.05 
1.0206 
1 a 0  
0.9 
0.8 

32 293 
16 355 
9 882.4 
6 965.0 
6 207.5 
5 815.0 
5 772.22 
5 890.0 
6 186.0 

19384 
26247 
31 955 
77 840 

188 250 

0.228 
0.590 
1.158 
1.377 
1.885 
1.810 
1.719 
1.361 
1.015 

- 0'399 
- 0,338 
- 0.299 
- 0.142 
- 0.058 

5.548 
4.025 
3.257 
2.912 
2.868 
2.930 
3.0 
3.178 
3,400 
8.429 

10.37 
11.84 
21.11 
36.75 

m,, nt )  

- 0.3584 
- 0.5384 
- 0'6564 
- 0.7360 
- 0.7792 
- 0.8764 
- 04764 
- 0.9440 
- 1.0068 

0.094 
0.8868 
1.4424 
3.6456 
4.194 

R,, 

32 420 
16 640 
10 370 
7 693 
7 101 
6959 
7 047 
7 555 
8 345 

19440 
26 560 
32 350 
78 190 

188 400 

TABLE 4. The values of the derivative of the steady plane-Poiseuille-flow growth rate o)  with 
respect to Reynolds number R, the perturbation coefficient .%'(Ao, 2)), the frequency ratio (w, /Q)  
and the neutrally stable value of Reynolds number, R,,, of the oscillatory flow with amplitude 
A, = 0.05 

perturbation term h(l,2) in expansion ( 1 5 b ) .  For small values of A and (R-R,) one 
has the Taylor's expansion in two variables for a = constant, 

where the subscript n denotes values on the steady-flow neutral curve. 
On the steady-flow neutral curve 9 ( A ( l , o ) )  = 0 and on the unsteady-flow neutral 

curve %(A,,)) = 0. Hence, by evaluating equation (37)  on the unsteadyflow neutral 
curve one obtains 

This formula was used to compute points on the dashed curve in figure 5.  Table 4 
gives the values of B(dh,,,,/dR), and 3i ' (A( l ,2~) ,  that were used to compute the dashed 
curve. The values of 9(dh(,, ,)/dR), were computed by using five-point central difference 
formulae. These values are believed to be accurate to the number of figures shown in 
the table 4. 

The inner solid curve in figure 5 is the nose of the neutral curve of OPP flow with 
A, = 0.15 (A, = 38-88 at  a = ac, R = R,) a n d p  = 161. Note that the critical Reynolds 
number is nearly doubled. 

The results shown in figure 5 indicate that a t  the apparent optimum stabilizing 
frequency, ,!? = 16.1, plane Poiseuille flow can be moderately stabilized by small- 
amplitude oscillations and substantially stabilized by moderately-large-amplitude 
oscillations. However, the stabilization achieved in figure 5 requires very large values 
of the relative oscillating pressure gradient amplitude. I n  an act*ual experiment in 
which a liquid such as water is the working medium it would seem very difficult to 
impose such large oscillating pressure gradients. 
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FIGURE 6. The growth rate &?(Ao,) of the principal disturbance mode as a function of Reynolds 
number R for fixed values of (dimensional) oscillatory pressure-gradient amplitude (A, = 0.15) 
at  a = 1.0206, /3 = 16.1. 

R W,/R W(A,l,Z)) W(A(1, 4)) 

5 772.22 3.0 - 0.8763 - 7.915 
8 000 3.93 - 0.9648 - 2.632 

11000 5.10 - 0.9096 17.4496 
15000 6.58 - 0.6364 46.053 
20 000 8.32 - 0'0704 32,104 
26 247 10.37 0,8868 - 154.35 

TABLE 5. Values of &?(A,l, 2)) and &?(Ao, for fixed frequency oscillation /3 = 16.1 and a = a, = 
1.0206 for various values of Reynolds number in the unstable region of the steady basic flow 

Figure 6 shows the graphs of &?(A(l)) versus Reynolds number in the unstable region 
of plane Poiseuille flow for p = 16.1, a = a, = 1.0206 and for two values of A; A = 0 
and A, = 0.15. The values of 9 ( A ( l , 2 ) )  and L2(A(l,4)) for cases depicted in figure 6 are 
given in table 5 ,  but the graph of &?(A(,,) for Af = 0-15 was computed using M = 40 
terms of the series (15) and the Shanks transformation. It is interesting to note, in 
this case, that the flow is destabilized on the back of the neutral curve of the steady 
flow. 

Finally, figure 7 shows the graphs of the values of &?(A(l)) as a function of the velocity 
amplitude ratio A for various values of R and a and for ,8 = 16.1 (q/Q = 3 a t  a = 

and R = RJ. The graphs of &?(A(,)) were computed using M = 40 terms in the expan- 
sion (15) and the Shanks transformations. These graphs were drawn up to the values 
of A at which the Shanks table seemed to converge to about three significant figures. 

It is interesting to note that, a t  higher values of Reynolds number, the series (15b)  
has a very small radius of convergence and that the Shanks transformation (or any 
other sequence transformation in the Vanden-Broeck &, Schwartz 1979 scheme) did 
not produce converged values of A,, for much larger values of A. For example, the 
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FIGURE 7. The growth rates %(A,,,) versus A at p = 16.1 and for various values of R.  
(a)  for a = 1.0206, (b)  for a = 0.95, (c) for a = 0.85. 

-3.0 t 
case of R = 26247 in figure 7 ( a )  has a radius of convergence of A,, = 0-05 and the 
Shanks transformation yields converged values of .!%?(A(,,) up to A = 0.1. The graphs 
of figure 7 were used to  interpolate the values of R that  give neutral stability, 

= 0 a t  a = 1.0206, 0.95 and 0.85 and A, = 0-15 (where A = AfRc/R a t  ct = ac), 
and from which the neutral curve for A, = 0.15 in figure 5 was constructed. 

5. Concluding remarks 
It has been shown that the sinusoidally oscillating plane Poiseuille flow is more 

stable than the steady plane Poiseuille flow for a wide range of frequencies of the 
imposed oscillation and for substantial values of oscillation amplitude. The range of 
imposed oscillation frequencies which stabilizes the flow in the vicinity of the steady- 
flow neutral point a = ac = 1.0206, R = R, = 5772.22 ranges from the very high 
value of Q = SW, to the fairly low value of Q = oJ10. For even lower values of fre- 
quency, Q < o,/10 the oscillatory flow is slightly less stable than the steady flow. 
The range of oscillation amplitudes for which this situation holds seems to be as high 
as A = 0.25. The optimal value of imposed frequency Q for stabilizing plane Poiseuille 
flow seems to be about Q = w1/3  a t  ct = a,, R = R,. At this value of Q p = 16.1. For 
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p = 16.1 and Af = 0.15 one can achieve a doubling of the critical value of the Rey- 
nolds number. At the values of Reynolds number corresponding to the back of the 
steady flow neutral curve the oscillatory flow is slightly less stable than the steady flow. 

It was found that in every case that was examined (about 20 combinations of values 
of a, R and p)  only the principal disturbance mode of the steady flow was significantly 
altered by the imposed oscillations even for values of A as large as 0.25. This is contrary 
to the results of Grosch & Salwen (1968) who found, numerically, that a t  CI = ac, 
R = R,, Q = w1 and A = 0.105 the oscillations caused a drastic destabilization of one 
of the higher modes. 

The results obtained in this investigation differ considerably from those of Grosch & 
Salwen. Not only has the destabilization found by Grosch & Salwen not been con- 
firmed, but also the degree of stabilization for very small values of A that was pre- 
sented by them differs substantially from the values found in the present investigation. 
Figure 11 of the paper by Grosch & Salwen presents the graph of 92(h(l)) versus A for 
w l / Q  = 1, a N ac and R 21 R, (using the notation of the present paper). From this 
graph one can estimate the value of 9(A( l ,21 )  that  results from Grosch & Salwen’s 
calculations. Their value of 9$?(A(l,2,) turns out to  be about - 2 x 102 which is about 
three orders of magnitude greater than the value obtained in the present investigation 
(see table 2). Such a large value for 92(h(l,2)) seems rather unlikely in view of the thin- 
ness of the oscillation-induced Stokes layer when wl/Q = 1 (i.e. /3 % 28). The stability 
characteristics of OPP flow a t  very high frequencies (see table 3) are in qualitative 
agreement with Hall’s results. 

The calculations performed in this investigation were based on solving the system 
of time periodic stability equations by series expansions in the amplitude parameter A. 
As many as 40 terms of this series were computed and nonlinear sequence transforma- 
tions of the partial sums were used to evaluate the series well past its radius of 
convergence. This method of solving the stability equations, in contrast to direct 
numerical time integration of the equations (see Grosch & Salwen 1968) is very efficient. 
Also, one obtains an analytical result in terms of the amplitude A for fixed values of 
the other parameters. 

It seems that the range of values of A for which accurate values of A(,) can be obtained 
with as many as 40 terms of series (15) is disappointingly limited. However, one must 
realize that in the range of oscillation frequency considered here a value of A equal to 
0.1 corresponds to  very large values of the oscillatory pressure gradient compared to  
the steady flow pressure gradient. Hence, the range of values of A between 0.0 and 
0.25 would seem to cover the important range for high Reynolds number. 

Probably the greatest advantage offered by the perturbation method of computing 
the Floquet exponents as compared to numerical time integration is that  the pertur- 
bation method allows the calculation of the effects of the imposed oscillations on each 
individual disturbance mode of the steady flow. Hence, this method provides a means 
of making a more detailed analysis of the change of the stability characteristics that  
are induced in the basic flow by the imposed oscillations. 

A comparison of computer times required by the perturbation and time integration 
methods may be of interest. On the DEC-10 computer system using double-precision 
arithmetic about 2.5 min of CPU time is required to compute 40 terms of the series 
expansion (15) for the system of N = 26 equations (12). The computational time 
required to compute the 40 terms of the perturbation series depends only on the 
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value of N ,  not the values of a, R or p and increases like N 2 .  The numerical time inte- 
gration of equations (12) is very sensitive to the value of q / L ?  (i.e. p ) .  For very low 
values of the frequency !2 one must use many time steps in order properly to resolve 
the steady flow frequencies such as wl. Furthermore, one must either integrate system 
(12) for the entire fundamental matrix over one period of the imposed oscillations, or 
one must integrate system (12) over several periods (at least three of them) for a 
single vector solution. I n  the first case, the amount of computation is proportional to 
KN3,  in the second case the amount of computation is proportional to PKN2, where 
K is the number of time steps and P is the number of complete imposed oscillation 
periods over which the time integration is executed. For the cases that were numerically 
integrated in this investigation, only the second method was used. In  the higher- 
frequency cases, wl/R = 3 of figure 1, the time integration required 1.5 min of CPU 
time per period. Hence, for three periods, 4.5 min of CPU time was required. For the 
low-frequency case, wl/Q = 14 of figures 4 and 5, about 8 min of CPU time per period 
was required. In  this case, 1400 equal time steps per period were required to obtain 
accurate results for the change in c between the beginning and end of a period. These 
results can be used to infer the CPU time requirements for the calculation of the 
fundamental matrix and it is clear that such a calculation is comparatively very 
expensive. The price one has to pay to gain this computational advantage of the 
perturbation method is its limited range of validity in the variable A although this 
range may be increased by a more careful analysis of the series coeficients. Also, the 
programming effort required for the series expansion method was substantial com- 
pared to  the programming effort of the time integration method. 
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